# Advanced Algorithm 

Jialin Zhang<br>zhangjialin@ict.ac.cn<br>Institute of Computing Technology, Chinese Academy of Sciences

April 18, 2019

## BPP vs Probabilistic Method

- A language $L \in B P P$, the randomized algorithm $A$
- Raise the probability of success by repeating algorithm $A t$ times
- The error probability: exponential small when $t$ increases, $e^{-c t}$
- If we apply probabilistic method here...
- Consider a BPP algorithm $\tilde{A}$ with error probability $e^{-n^{2}}$, suppose the number of different random strings is $m$


## Theorem

$B P P \subseteq P /$ poly

Lecture 6.1: Probabilistic Amplification

## Probabilistic Amplification

- Ref: Randomized Algorithm - Chapter 3.4, Page 51
- Randomness is a resource.
- For a language $L \in R P$, consider the randomized algorithm $A$ (uses $k$ bits random variable, error probability $1 / 2$ ).
- If we repeat the algorithm $A t$ times
- The error probability: $2^{-t}$
- number of one-bit random variable: $k t$
- If we have only $2 k$ bits random variable
- error probability: $1 / 4$
- Can we do better? $1 / t$ !
- If we have more random bits?
- Ref: Randomized Algorithm - Chapter 5.3, 6.8, using expander and random walk

Lecture 6.2: Algebraic Technique

## Algebraic Technique

- Ref: Randomized Algorithm - Chapter 7.1, 7.2 , page 161
- Matrix multiplication - Freivald's Technique
- Communication complexity for EQ function


## Polynomial Identity Testing

- Given polynomials $f, g, h$, decide wheter $f \cdot g=h$ or not?


## Theorem (Schwartz-Zippel Theorem)

Let $Q\left(x_{1}, x_{2}, \cdots, x_{n}\right) \in \mathbb{F}\left[x_{1}, x_{2}, \cdots, x_{n}\right]$ be a multivariate polynomial of total degree $d$. Fix any finite set $S \subseteq \mathbb{F}$, and let $r_{1}, \cdots, r_{n}$ be chosen independently and uniformly at random from S. Then, $\operatorname{Pr}\left[Q\left(r_{1}, r_{2}, \cdots, r_{n}\right)=0 \mid Q\left(x_{1}, x_{2}, \cdots, x_{n}\right) \not \equiv 0\right] \leq \frac{d}{|S|}$.

## perfect matching

- Ref: Randomized Algorithm - Chapter 7.3
- Given a bipartite graph $G(U, V, E)$, decide whether it contains a perfect matching.
- Polynomial time algorithm: maximal flow algorithm, Hungarian algorithm, etc.
- Relation between perfect matching and algebra
- randomized algorithm: running time $=$ running time of matrix multiplication
- parallel computing $\left(O\left(\log ^{2} n\right)\right.$ in expectation), ref. Randomized Algorithm - Chapter 12.4


## Interactive Proof system (IP)

- Ref: Randomized Algorithm - Chapter 7.7, Page 172
- NP: exists short proof
- IP: exists short active proof (informal)
- Graph Isomorphism problem $\in N P$
- Graph non-Isomorphism problem: no known short proof now.
- GNI $\in I P$


## Interactive Proof system (IP)

- Verifier: Arthur, polynomial-time
- Prover: Merlin, unlimited computational power, know Arthur's strategy
- Limitation of Merlin: cannot access to the random bits used by Arthur
- IP: all languages $L$ that have an interactive proof system $(\mathrm{P}, \mathrm{V})$ with a randomized polynomial-time verifier V and an honest prover P such that for any input $x$,
$x \in L \Rightarrow$ for the honest prover $P, \operatorname{Pr}[V(x, P)$ accepts $]=1$
$x \notin L \Rightarrow$ for any prover $P^{\prime}, \operatorname{Pr}\left[V\left(x, P^{\prime}\right)\right.$ accepts $] \leq 1 / 2$
- IP $=$ PSPACE (we will not prove it in the class)


## Interactive Proof system (IP)

## Theorem <br> $\overline{3 S A T} \in I P$.

## Homework

- Randomized Algorithm, Problem 7.2, Page 188 (Algebraic Techniques)

