Advanced Algorithm

Jialin Zhang zhangjialin@ict.ac.cn

Institute of Computing Technology, Chinese Academy of Sciences

April 18, 2019

BPP vs Probabilistic Method

- A language $L \in BPP$, the randomized algorithm A
- Raise the probability of success by repeating algorithm A t times
 - The error probability: exponential small when t increases, e^{-ct}
- If we apply probabilistic method here...
 - Consider a BPP algorithm \tilde{A} with error probability e^{-n^2} , suppose the number of different random strings is m

Theorem

 $BPP \subseteq P/poly$

Lecture 6.1: Probabilistic Amplification

P.

æ

Probabilistic Amplification

- Ref: Randomized Algorithm Chapter 3.4, Page 51
- Randomness is a resource.
- For a language $L \in RP$, consider the randomized algorithm A (uses k bits random variable, error probability 1/2).
 - If we repeat the algorithm $A \ t$ times
 - The error probability: 2^{-t}
 - number of one-bit random variable: kt
 - If we have only 2k bits random variable
 - error probability: 1/4
 - Can we do better? 1/t!
 - If we have more random bits?
 - Ref: Randomized Algorithm Chapter 5.3, 6.8, using expander and random walk

Lecture 6.2: Algebraic Technique

æ

- Ref: Randomized Algorithm Chapter 7.1, 7.2 , page 161
- Matrix multiplication Freivald's Technique
- Communication complexity for EQ function

• Given polynomials f, g, h, decide wheter $f \cdot g = h$ or not?

Theorem (Schwartz-Zippel Theorem)

Let $Q(x_1, x_2, \dots, x_n) \in \mathbb{F}[x_1, x_2, \dots, x_n]$ be a multivariate polynomial of total degree d. Fix any finite set $S \subseteq \mathbb{F}$, and let r_1, \dots, r_n be chosen independently and uniformly at random from S. Then, $Pr[Q(r_1, r_2, \dots, r_n) = 0 \mid Q(x_1, x_2, \dots, x_n) \neq 0] \leq \frac{d}{|S|}$.

- Ref: Randomized Algorithm Chapter 7.3
- Given a bipartite graph G(U, V, E), decide whether it contains a perfect matching.
 - Polynomial time algorithm: maximal flow algorithm, Hungarian algorithm, etc.
- Relation between perfect matching and algebra
 - randomized algorithm: running time = running time of matrix multiplication
- parallel computing (O(log² n) in expectation), ref.
 Randomized Algorithm Chapter 12.4

- Ref: Randomized Algorithm Chapter 7.7, Page 172
- NP: exists short proof
- IP: exists short active proof (informal)
- Graph Isomorphism problem $\in NP$
- Graph non-Isomorphism problem: no known short proof now.
- GNI ∈ *IP*

- Verifier: Arthur, polynomial-time
- Prover: Merlin, unlimited computational power, know Arthur's strategy
- Limitation of Merlin: cannot access to the random bits used by Arthur
- IP: all languages L that have an interactive proof system (P,V) with a randomized polynomial-time verifier V and an honest prover P such that for any input *x*,

 $x \in L \Rightarrow$ for the honest prover P, Pr[V(x, P) accepts] = 1 $x \notin L \Rightarrow$ for any prover $P', Pr[V(x, P') \text{ accepts }] \le 1/2$

• IP = PSPACE (we will not prove it in the class)

Theorem

 $\overline{3SAT} \in IP.$

æ

∢母▶ ∢ ≣▶

• Randomized Algorithm, Problem 7.2, Page 188 (Algebraic Techniques)

母▶ ∢ ≣▶

æ